Cl Pipeline with Docker
2015-02-27

Juho Makinen, Technical Operations, Unity Technologies Finland
http://www.juhonkoti.net
http://github.com/garo

Overview

1. Scale on how we use Docker
2. Overview on the production infrastructure
3. Continuous Integration pipeline with Jenkins

4. Production deployment

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

History on our Docker usage

« Started writing new deployment platform with Chef, fall 2013

« Started experimenting with Docker 0.7, Jan 2014

» First production tests with mongodb and Docker, Mar 2014

* Nearly every backend service migrated into Docker by end of May 2014
« Started Orbit development on Jul 2014

« First production usage with Orbit around Nov 2014

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Some statistics

« 31130 Docker layers

* 1950 commits on the Chef deployment repository

* 540 GiB of Docker containers in our private repository
« 96 distinct different container names

« Zero production downtime due to Docker itself

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

List of software deployed in Docker containers

Bifrost
Cassandra
nginx
Datastax Opscenter
Elasticsearch
Etcd
Graphite-beacon
Graphite
haproxy2statsd
10. ice

11. jenkins

12. kafka

13. memcached
14. mongodb

15. mongos

©CoNoOwN =~

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

nsqglookupd
ocular
rabbitmq
redis

Docker registry
Rundeck
s3-sinopia
s3ninja
scribe2kafka
scribed
secor

squid

statsd
statsite
unifi-nvr

31. wowza
32. zabbix
33. zookeeper

Plus around 40 internally
developed software
components

Four different environments

éT\sle
1. Development environment
Minimum set of services, no clustering, everything
in default port PVOdU C"Lj

Testing environment
Staging environment
Production environment

BN

Full set of services with clustering. Identical host names and port numbers.

Only minor differences which are mostly limited to visible URLs for web services.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Continuous Integration workflow

1. Developer runs minimum set of required backend services in Docker containers,
provided in a single Vagrant virtual machine

2. Developer runs full test suite in his laptop (make test)
3. Commit and push to git server. Jenkins is triggered and build is started

4. If build success the Docker container is uploaded to internal registry

5. Developer can commit the new build into production using our in-house tool Orbit

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

How does the production look?

haproxy

localhost:80
localhost:443

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Frontend machine

Database machine
redis-a-1:30001

application
localhost:1234

mongos proxy
localhost:30005

Database machine

haproxy

localhost:30100

(T

localhost:30101

|]

mongodb:27017

Database machine

! elasticsearch:9200

Database machine

rabbitmq:15672

Service naming

« Each service has a name which is unique within a deployment group (AWS region).
Example names: mongodb-a-1, mongodb-a-2, mongodb-a-3, redis-b-1

« Each physical machine has a separated name. Example names: db01-1, db02-3

« Each physical machine has an A record
* “db01-1.us-east-1.unity3d.com A 10.0.0.1”

« Each service has an CNAME record:
* “mongodb-a-1 CNAME db01-1.us-east-1.unity3d.com”

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Service naming (cont)

* In testing/staging/production environments the applications use the service name
without the full domain in their configurations:
« client = new Redis([“redis-a-1:30001”, “redis-a-2:30001"])

* Intesting/staging the redis (in this example) services are inside Docker hosts which
use the “-h=redis-a-1” -option to bind a host name for the container.
« dnsmasq script-fu is used so that the application can do DNS query for “redis-a-
1” and get the container ip as a response.

* In production the frontend machine has /etc/resolv.conf configured with “search us-

east-1.unity3d.com” so that the dns finds the redis-a-1.us-east-1.unity3d.com
CNAME which then points out to the A record, thus finally getting the ip.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Production

Whekre 15
Fedig - -a -7 ? QUERY redis-a-1.us-east-1.unity3d.com
1 \) /' redis-a-1.us-east-1.unity3d.com CNAME
db01.us-east-1.unity3d.com

fetciresolv.conf % db01-1.us-east-1.unity3d.com A
search us-east-1.unity3d.com 10.0.0.1

Q, Testing and Staging
,? \ redis-a-1 A172.17.42.1
5 docker
1 ' daemon API
@ Every few seconds
redis-a-1 172.17.42.1

redis-b-1 172.17.42.2
mongodb-a-1 172.17.42.3

COPYRIGHT 20

Containers for development environment with --net=host
redis mongodb
Testin gm achine localhost:6379 localhost:27017
CcO nfl g u rati on Containers to represent production, each has its own ip
redis redis mongodb
redis-a-1:30001 || redis-b-1:30002 || mongodb-a-1:30010
redis redis mongodb
redis-a-2:30001 || redis-b-2:30002 || mongodb-a-2: 30010
redis redis mongodb
redis-a-3:30001 || redis-b-3:30002 || mongodb-a-3: 30010

« Contains two set of services:
* Default environment, default ports running in --net=host container mode

« Testing environment, same port numbers as in production, running in normal --
net=bridge mode (the default for Docker)

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

What do we want to test?

« Statistical code analysis.

« Unit tests. Usually without database access as they are mocked, except on database
access code which uses real databases. Needs to be really fast test suite, usually
under 10 seconds.

* Also check code coverage.

» Acceptance tests which in our case usually tests big parts of the system together.

« Integration and black box testing. Start the software and do (HTTP) queries to its
visible interfaces.

« Settings: Verify that software can connect to all required
databases with full clustering and high availability support.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Local development machine, ENV=development

« Developer uses a Vagrant virtual machine which starts a minimum amount of required
services in Docker container.

* Minimum amount means that there’s no clustering and no sharding, so just one redis,
one mongodb, one cassandra etc.

« All services are on their default ports and they are NAT’ed from the virtual machine
into the host computer.

« Depending on project developer can run the actual application either directly in the
host machine or in the VM

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Jenkins build flow

Jehkins

docker build -t $docker_image .

docker run -i --net=host -e ENV=development $docker_image make test-unit

docker run -i --net=host -e ENV=development $docker_image make test-unit-coverage
docker run -i --net=host -e ENV=development $docker_image make test-acceptance

hwnp =

docker run --name $JOB_NAME-net /redir.sh $ETHO_IP 30001:30001 30002:30002
docker run --net="container:$JOB_NAME-net” -e ENV=testing make load-testing-data
docker run --net="container:3JOB_NAME-net” -e ENV=testing make node app.js
docker run --net="container:3JOB_NAME-net” -e ENV=testing make test-integration

© N3O

©

docker push $docker_image

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Closer look on unit tests

docker run -i --net=host -e ENV=development $docker_image make test-unit

» Uses the --net=host and because ENV=development is used, it tries to find the databases
from localhost

* Redis at localhost:6379
* Mongodb at localhost:27017

« This is the same what the developer has in his own laptop

+ the Makefile contains steps which loads test data into the databases in the beginning of
each test suite run

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Closer look on integration tests

docker run --name $JOB_NAME-net /redir.sh $ETHO _IP 30005:30005 30100:30100

1. This creates a container which is used as a base network for the following

steps.

The redis.sh uses “redir’ command to redirects few required ports from the
“‘localhost” of this container into outside of the container, which in this case is
the ethO of the host machine. This emulates for example mongos proxies which
exists in every frontend where the application is executed.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Closer look on integration tests (cont)

docker run --name $JOB_NAME-net /redir.sh $ETHO _IP 30005:30005 30100:30100
docker run --net="container:$JOB_NAME-net” -e ENV=testing make load-testing-data
docker run --net="container:3JOB_NAME-net” -e ENV=testing make node app.js

W~

a. The 2nd and 3rd command creates container which reuses the networking stack from
the first container.

b. The “node app.js” starts the to-be-tested application to listen in localhost: 1234 for
incoming HTTP requests, just like it would do in production

4. docker run --net="container:$JOB_NAME-net” -e ENV=testing make test-integration

a. The integration test can now do HTTP queries to localhost:1234 and test the
application and then verify that the application updated databases like it should

-
COPYRIGHT 2014 @ UNITY TECHNOLOGIES Q unliy

Purging and squashing docker images

Because most components needs full build environment it creates an unnecessary
security risk in production.

We’re experimenting with a purge script which is executed on the built container after unit
tests are done and before integration tests start.

This script removes everything which is not a library, thus the container is left with no
unnecessary tools which an attacker could use for example to download a rootkit.

The resulting container is squashed with docker-squash which squashes all layers into
one.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Deploying with Orbit

Orbit is an in-house developed open source tool to deploy containers into a set of
machines.

Features:

Declare machine configurations with revision controlled json files

Allow developers to use a cli tool to upgrade a container version without revision
control. (separated audit and history logging)

Agent in all machines which uses the local Docker API to manage containers.
Configuration stored in etcd ensemble plus RabbitMQ for real time communication.
Support configuring haproxies and populate server lists automatically.

Support sending metrics to Zabbix for monitoring

Support HTTP and TCP health checks

Used in production and still in active development.

Written in Go, so only single static binary needs to be installed on each machine.

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Deploying with Orbit

Really fast deployments: committing new version into production takes 60-90 seconds on
average.

Rollback even faster: usually less than 30 seconds as the previous container is still
cached in frontend machines.

Interleaves individual container restarts so that entire cluster isn’t restarted at exact same
second (unless especially requested)

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

i} garo — garo@terminal-2: ~ — ssh — 97x24

garo@terminal-2:~% orbitctl endpoints

service a2 has 8 endpoints

service admin-client has 3 endpoints

service applifier-jobs has @ endpoints
service applifier-logger has 3 endpoints
service applifier-stats has 8 endpoints
service applifier-web has 3 endpoints

service cdn-proxy has 6 endpoints

service comet has 45 endpoints

service dashboards has 1 endpoints

service endpoints has @ endpoints

service everyplay-ab has 6 endpoints

service everyplay-apl has 6 endpoints

service everyplay-api-encoder has 1@ endpoints
service everyplay-api-worker has 6 endpoints
service everyplay-backend has 5 endpoints
service everyplay-es-a has 3 endpoints
service everyplay-fe-developer has 6 endpoints
service everyplay-fe-mobile has 6 endpoints
service everyplay-fe-web has 6 endpoints
service everyplay-frontend has 6 endpoints
service gameads-admin-backend has 6 endpoints
service impact-super-admin has 6 endpoints
service mediation-server has 45 endpoints

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

i} garo — garo@terminal-2: ~ — ssh — 97x24
garo@terminal-2:~% orbitctl service comet
Service comet is currently running revision 072451fbbaaa22b4dadeddobc56931518752aeb61c
Commit ©72451fbbaaallb4dadeddobcS69f5F8r52a0e6lc
Author: Segrel Koskentausta <segrealm@gmail.com:
Date: 2015-02-26 08:38:10 +0000 UTC (22h7m57.091480918s ago)

Merge pull request #267 from Applifier/take_ads_auth_into_use

Take ads-auth module into use
Continuous Integration server url for this service: http://staging.applifier.info:8080/ job/comet/

Deployment was done at 2015-02-26 99:56:00.453169303 +0000 UTC (20h50m6.638371933s ago)

Commit: dr6d49cr7ler723eadSbeb®fdelSol8bec3cbZaf

Commit: 30f2581b73d654f5749acfclal9464ecdr@1c39c

Commit: alb42lcbb39alalc9ebcdl48e37ed46@1bbc961ba

Commit: abb91d28a@85a54afdbe2?5fb2f7003470d947 31

Commit: 5642bb34d65aefbf8aa8bf513608b4ala8959fel

There are 5 newer commits than the currently deployed revision, from which 3 could be deployed (f
rom old to new):

Commit 5642bb34d6S5aefbf8aa8bfs13608b4alas959fel

Author: Samuli Soderlund <samuli@unity3d.coms
Date: 2015-82-25 11:51:57 +0000 UTC (42h54ml2.264457862s ago)d

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

i} garo — garo@terminal-2: ~ — ssh — 97x24

Date: 2015-82-25 11:51:57 +0000 UTC (42h54ml2.264457862s ago)d
Updated Android categories
Commit 30f2581b73d654f5749acfc2a29464ecd7@1c39¢
Author: jalava <jalava@users.noreply.github.com:
Date: 2015-02-26 14:33:02 +0000 UTC (16h13m7.264480632s ago)
Merge pull request #2700 from Applifier/shorten_unit_test_execution_time
Use lower timeouts in unit tests to get them running faster
Commit dr6d49cy7ler723ead56eb@f4el5618becicblaf
Author: Antti Klemetti <anttik@unity3d.com:
Date: 2015-02-26 14:34:15 +0000 UTC (16h11im54.264515607s agod
Merge pull request #269 from Applifier/eliminate_mongoutils.db.bson_serializer

Stop using mongoutils.db.bson_serializer

You can deploy the newest commit with this command: orbitctl service comet set revision df6d49c¢/7
1e7723edd56e6014e15618bec3cb2af

garo@terminal-2:~%

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

& unity

Questions?

