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What does Applifier do?
Juho Mäkinen

Software Architect
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Cross-promo network

• Key product is a cross-promotion network 
for games.

• Operates mostly inside Facebook

• Helps game publishers to get more traffic
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Cross-promo network
• About 1000-1200 requests per second.

• 700M ads served per day

• Content delivery network delivers 6TB of 
data per day. Peaks at 1 Gbps
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Our Delivery Platform
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Using Javascript as a 
platform

• It’s possible to write entire application 
stack with Javascript

• From browser all the way to the datastore

• Imagine that you can send a JS object from 
the browser to the backend, store it to the 
database and retrieve it later without any 
unnecessary transformations.
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Why Javascript
• Fast development cycle

• Easy data transformations as the storage 
and delivery is always JSON

• It’s possible to share code between 
browser and the backend
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Our stack
• Javascript client library running inside users 

browser

• Uses HTTP to request JSON from the 
delivery backend

• Delivery backend implemented with 
Javascript on top of Node.JS

• MongoDB JSON document storage as db
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Why Node.JS
• Perfect for low latency, high IO applications

• Load balancing, API backend, comet / 
longpoll servers, streaming...

• It’s easy to process the request, close the 
client socket and continue some tasks after 
the request has been processed.

• It’s easy to cache data between requests
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Where Node isn’t good
• Harder to code (than say PHP).

• Need to take perfect care of all resources 
to avoid leaks.

• Less libraries and bindings because 
everything must be asynchronous and non-
blocking.
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Our Node.js backend
• Uses express and connect middlewares for 

HTTP server handling.

• node-mongodb-native for MongoDB 
database connection. Except that we don’t 
use the native part from it due to bugs.

• Few native extensions like geoip library

• 2/3 of the lines are actual code, 1/3 are 
tests  

Thursday, May 12, 2011



Why MongoDB
• Document oriented database

• Stores JSON documents which can be 
indexed on arbitrary keys inside 
documents.

• Fast and scales well

• Good drivers for Node.JS

• All operations (queries, scripts etc) are in JS
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MongoDB example
> var doc = { name : "Garo", company : "Applifier" };
     
> db.test.save(doc);

> db.test.find({name : "Garo"});
{ "_id" : ObjectId("4dca539f422946adf7afe034"), 
"name" : "Garo", "company" : "Applifier" }
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Tips for Node.JS
What have we learned?
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Buy a mac
• We can run our entire development 

environment in our mac laptops.

• node

• mongodb

• apache, php (if you wish...)
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Watch out for leaks
• The node server stays intact between 

requests.

• Thus resources, memory and database 
connections can easily leak.

• Db connection leaks are most common.

• Our testing framework and database api 
helps detecting and avoiding them
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Detect socket leaks
• You can use “netstat -np” to display socket 

connections to the node process.

• Run a bunch of requests to the node and 
then look if the database connections are 
closed correctly.

Thursday, May 12, 2011



Detect resource leaks
• Leaked sockets, database connections or 

objects stored into scopes might leak 
memory.

• Run node with “--expose-gc --trace_gc” to 
get memory consumption data.

• Beware, the GC makes this hard to read

• Run 100000 queries and see that the 
memory consumption is still about 
the same.
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Clustering
• Node is single threaded

• Using multiple cores needs additional 
effort. There are two good options

• Spawn multiple instances, one for each 
core and use load balancer to drive 
traffic into them. “Forever” makes this 
easy. https://github.com/indexzero/forever
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Clustering
• Another option: Use Node Cluster 

(http://learnboost.github.com/cluster/) to 
fork worker threads.
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Test Driven 
Development

• The nature of Javascript makes it easy to 
write mock objects

• Because your code is split into short 
callback functions, it’s easy to test them 
individually with a unit testing framework.

• We use https://github.com/caolan/nodeunit
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Avoid try..catch blocks
• As node is event driven, you use a lot of 

callbacks.

• try..catch blocks doesn’t behave well with 
callbacks and they’re slow.

• Stick with the node callback notation 
where you pass error as first parameter 
and handle errors this way.
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Use async.js library
• Makes easier to write asynchronous code 

and makes it look prettier.

• Helps avoiding nesting callbacks

• https://github.com/caolan/async
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Where to get modules?
• npm stands for “node package manager”

• It’s your apt-get / CPAN / yum for all 
your node module needs. Learn it.

• Github. Full of node related modules.
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Avoind anonymous 
functions

• Give all your functions a name so that you 
can get better stacktraces.

• fs.rename(p1, p2, function rename_cb() {
  // callback name is rename_cb
  // instantly better stacktrace upon error
}
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Log everything
• Log all your data and store it somewhere 

when you can query it.

• Use some form of metrics system to trace 
counters and to get history graphs out of 
them.

• All this helps debugging, performance 
tuning and diagnostics.
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Log everything
• We use Scribe to feed performance and log 

data from our machines into a hadoop 
cluster. https://github.com/facebook/scribe

• Hadoop is used to crunch the data into 
usable metrics.

• There’s also tools for getting realtime 
statistics into usable graphs.

• Zabbix, statsd / graphite
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Questions?
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Questions?

ps. we are hiring
http://careers.applifier.com

Web developers, frontend developers, 
Javascript gurus...
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