
Applifier and Node.JS
Juho Mäkinen

Software Architect at Applifier

Frontend Finland
11.5.2011

Thursday, May 12, 2011

Agenda
1. What Applifier does?

2. Our Delivery Platform

3. Tips for Node.JS

4. Questions

Thursday, May 12, 2011

What does Applifier do?
Juho Mäkinen

Software Architect

Thursday, May 12, 2011

Cross-promo network

• Key product is a cross-promotion network
for games.

• Operates mostly inside Facebook

• Helps game publishers to get more traffic

Thursday, May 12, 2011

Cross-promo network
• About 1000-1200 requests per second.

• 700M ads served per day

• Content delivery network delivers 6TB of
data per day. Peaks at 1 Gbps

Thursday, May 12, 2011

Our Delivery Platform

Thursday, May 12, 2011

Using Javascript as a
platform

• It’s possible to write entire application
stack with Javascript

• From browser all the way to the datastore

• Imagine that you can send a JS object from
the browser to the backend, store it to the
database and retrieve it later without any
unnecessary transformations.

Thursday, May 12, 2011

Why Javascript
• Fast development cycle

• Easy data transformations as the storage
and delivery is always JSON

• It’s possible to share code between
browser and the backend

Thursday, May 12, 2011

Our stack
• Javascript client library running inside users

browser

• Uses HTTP to request JSON from the
delivery backend

• Delivery backend implemented with
Javascript on top of Node.JS

• MongoDB JSON document storage as db

Thursday, May 12, 2011

Why Node.JS
• Perfect for low latency, high IO applications

• Load balancing, API backend, comet /
longpoll servers, streaming...

• It’s easy to process the request, close the
client socket and continue some tasks after
the request has been processed.

• It’s easy to cache data between requests

Thursday, May 12, 2011

Where Node isn’t good
• Harder to code (than say PHP).

• Need to take perfect care of all resources
to avoid leaks.

• Less libraries and bindings because
everything must be asynchronous and non-
blocking.

Thursday, May 12, 2011

Our Node.js backend
• Uses express and connect middlewares for

HTTP server handling.

• node-mongodb-native for MongoDB
database connection. Except that we don’t
use the native part from it due to bugs.

• Few native extensions like geoip library

• 2/3 of the lines are actual code, 1/3 are
tests

Thursday, May 12, 2011

Why MongoDB
• Document oriented database

• Stores JSON documents which can be
indexed on arbitrary keys inside
documents.

• Fast and scales well

• Good drivers for Node.JS

• All operations (queries, scripts etc) are in JS

Thursday, May 12, 2011

MongoDB example
> var doc = { name : "Garo", company : "Applifier" };

> db.test.save(doc);

> db.test.find({name : "Garo"});
{ "_id" : ObjectId("4dca539f422946adf7afe034"),
"name" : "Garo", "company" : "Applifier" }

Thursday, May 12, 2011

Tips for Node.JS
What have we learned?

Thursday, May 12, 2011

Buy a mac
• We can run our entire development

environment in our mac laptops.

• node

• mongodb

• apache, php (if you wish...)

Thursday, May 12, 2011

Watch out for leaks
• The node server stays intact between

requests.

• Thus resources, memory and database
connections can easily leak.

• Db connection leaks are most common.

• Our testing framework and database api
helps detecting and avoiding them

Thursday, May 12, 2011

Detect socket leaks
• You can use “netstat -np” to display socket

connections to the node process.

• Run a bunch of requests to the node and
then look if the database connections are
closed correctly.

Thursday, May 12, 2011

Detect resource leaks
• Leaked sockets, database connections or

objects stored into scopes might leak
memory.

• Run node with “--expose-gc --trace_gc” to
get memory consumption data.

• Beware, the GC makes this hard to read

• Run 100000 queries and see that the
memory consumption is still about
the same.

Thursday, May 12, 2011

Clustering
• Node is single threaded

• Using multiple cores needs additional
effort. There are two good options

• Spawn multiple instances, one for each
core and use load balancer to drive
traffic into them. “Forever” makes this
easy. https://github.com/indexzero/forever

Thursday, May 12, 2011

https://github.com/indexzero/forever
https://github.com/indexzero/forever

Clustering
• Another option: Use Node Cluster

(http://learnboost.github.com/cluster/) to
fork worker threads.

Thursday, May 12, 2011

http://learnboost.github.com/cluster/
http://learnboost.github.com/cluster/

Test Driven
Development

• The nature of Javascript makes it easy to
write mock objects

• Because your code is split into short
callback functions, it’s easy to test them
individually with a unit testing framework.

• We use https://github.com/caolan/nodeunit

Thursday, May 12, 2011

https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit

Avoid try..catch blocks
• As node is event driven, you use a lot of

callbacks.

• try..catch blocks doesn’t behave well with
callbacks and they’re slow.

• Stick with the node callback notation
where you pass error as first parameter
and handle errors this way.

Thursday, May 12, 2011

Use async.js library
• Makes easier to write asynchronous code

and makes it look prettier.

• Helps avoiding nesting callbacks

• https://github.com/caolan/async

Thursday, May 12, 2011

https://github.com/caolan/async
https://github.com/caolan/async

Where to get modules?
• npm stands for “node package manager”

• It’s your apt-get / CPAN / yum for all
your node module needs. Learn it.

• Github. Full of node related modules.

Thursday, May 12, 2011

Avoind anonymous
functions

• Give all your functions a name so that you
can get better stacktraces.

• fs.rename(p1, p2, function rename_cb() {
 // callback name is rename_cb
 // instantly better stacktrace upon error
}

Thursday, May 12, 2011

Log everything
• Log all your data and store it somewhere

when you can query it.

• Use some form of metrics system to trace
counters and to get history graphs out of
them.

• All this helps debugging, performance
tuning and diagnostics.

Thursday, May 12, 2011

Log everything
• We use Scribe to feed performance and log

data from our machines into a hadoop
cluster. https://github.com/facebook/scribe

• Hadoop is used to crunch the data into
usable metrics.

• There’s also tools for getting realtime
statistics into usable graphs.

• Zabbix, statsd / graphite

Thursday, May 12, 2011

https://github.com/facebook/scribe
https://github.com/facebook/scribe

Questions?

Thursday, May 12, 2011

Questions?

ps. we are hiring
http://careers.applifier.com

Web developers, frontend developers,
Javascript gurus...

Thursday, May 12, 2011

http://careers.applifier.com
http://careers.applifier.com

