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Why would you choose 
Node.JS?
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Using Javascript as a 
platform

• It’s possible to write entire application 
stack with Javascript

• From browser all the way to the datastore

• Imagine that you can send a JS object from 
the browser to the backend, store it to the 
database and retrieve it later without any 
unnecessary transformations.
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Why Javascript
• Fast development cycle

• Easy data transformations as the storage 
and delivery is always JSON

• It’s possible to share code between 
browser and the backend
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Why Node.JS
• Perfect for low latency, high IO applications

• Load balancing, API backend, comet / 
longpoll servers, streaming...

• It’s easy to process the request, close the 
client socket and continue some tasks after 
the request has been processed.

• It’s easy to cache data between requests
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Where Node isn’t good
• Harder to code (than say PHP).

• Need to take perfect care of all resources 
to avoid leaks.

• Less libraries and bindings because 
everything must be asynchronous and non-
blocking.
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General tips for 
Node.JS

What have we learned?
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Buy a mac
• We can run our entire development 

environment in our mac laptops.

• node

• mongodb

• apache, php (if you wish...)
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Choose a good JS IDE
• I use PHPStorm from JetBrains

• Things to look:

• Variable coloring by type

• Unused code hilighting

• Code navigation
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Log everything
• Log all your data and store it somewhere 

when you can query it.

• Use some form of metrics system to trace 
counters and to get history graphs out of 
them.

• All this helps debugging, performance 
tuning and diagnostics.
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Log everything
• We use Scribe to feed performance and log 

data from our machines into a hadoop 
cluster. https://github.com/facebook/scribe

• Hadoop is used to crunch the data into 
usable metrics.

• There’s also tools for getting realtime 
statistics into usable graphs.

• Zabbix, statsd / graphite
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Clustering
• Node is single threaded

• Using multiple cores needs additional 
effort. There are two good options

• Spawn multiple instances, one for each 
core and use load balancer to drive 
traffic into them. “Forever” makes this 
easy. https://github.com/indexzero/forever
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Clustering
• Another option: Use Node Cluster 

(http://learnboost.github.com/cluster/) to 
fork worker threads.
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Where to get modules?
• npm stands for “node package manager”

• It’s your apt-get / CPAN / yum for all 
your node module needs. Learn it.

• Github. Full of node related modules.

• npm packages can be installed for each 
project, or globally for entire system.

• Prefer to install packages per project.
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Use async.js library
• Makes easier to write asynchronous code 

and makes it look prettier.

• Helps avoiding nesting callbacks

• https://github.com/caolan/async
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Don’t deploy via NPM
• NPM packages gets upgrades

• But you might not notice one

• An upgrade might break your system by 
introducing a bug in an npm module used 
by some other npm module.

• Hopefully your CI and testing environment 
catches this.
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Watch out for leaks
• The node server stays intact between 

requests.

• Thus resources, memory and database 
connections can easily leak.

• Db connection leaks are most common.

• Our testing framework and database api 
helps detecting and avoiding them
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Detect socket leaks
• You can use “netstat -np” to display socket 

connections to the node process.

• Run a bunch of requests to the node and 
then look if the database connections are 
closed correctly.
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Detect resource leaks
• Leaked sockets, database connections or 

objects stored into scopes might leak 
memory.

• Run node with “--expose-gc --trace_gc” to 
get memory consumption data.

• Beware, the GC makes this hard to read

• Run 100000 queries and see that the 
memory consumption is still about 
the same.
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The fun part:
Making your code 

break less
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Delete form array
var a = ['a', 'b', 'c', 'd'];

delete a[0];

console.dir(a);

[ 'b', 'c', 'd' ]
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Delete form array
console.log(a[0]) prints undefined
console.log(a[1]) prints b
console.log(a[2]) prints c
console.log(a[3]) prints d
console.length is 4

happy bug hunting...
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Delete form array
// Array deletion done right
var a = ['a', 'b', 'c', 'd'];

// Array item 2 is ‘c’
// remove 1 item
a.splice(2, 1);
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Delete form array
// Delete inside for loop
var a = ['a', 'b', 'b', 'c', 'd'];

for(var i = 0;i < a.length; i++) {
  if(a[i] == 'b') {
    a.splice(i, 1);
    i--;
  }
}
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Avoid try..catch blocks
• As node is event driven, you use a lot of 

callbacks.

• try..catch blocks doesn’t behave well with 
callbacks and they’re slow.

• Stick with the node callback notation 
where you pass error as first parameter 
and handle errors this way.
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Don’t write callbacks 
unless needed

• Always prefer to return values directly with 
return instead of returning value in a 
callback.

• Also remember to refactor unnecessary 
callbacks away when a function turns from 
asynchronous into a synchronous after 
refactoring.
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Separate sync and 
async gets with name

• get prefix for functions which returns 
something as value

• var age = this.getAge();

• fetch prefix for functions which returns 
something via callback

• this.fetchUser(function cb(err, user) {...});
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Know your callstack
• The event callbacks come from the Node.JS 

main loop and this will ruin your callstack.
var level2 = function(msg) {

  console.log(new Error().stack);

};

var level1 = function(msg) { level2(msg); };

level2("Directly");

process.nextTick(function () { level2("nextTick"); });
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Know your callstack
Directly:   
   at stack.js:5:15

   at Object.<anonymous> (stack.js:12:1)

   at Module._compile (module.js:404:26)

   at Object..js (module.js:410:10)
   at Module.load (module.js:336:31)

   at Function._load (module.js:297:12)

   at Array.0 (module.js:423:10)
   at EventEmitter._tickCallback (node.js:126:26)
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Know your callstack
Via process.nextTick()   
   at stack.js:5:15

   at Array.0 (stack.js:13:32)

   at EventEmitter._tickCallback (node.js:126:26)
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Know your callstack
• You can use long-stack-traces npm module. 

Just require() it, but watch for small performance 
hit.
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Avoind anonymous 
functions

• Give all your functions a name so that you 
can get better stacktraces.

• fs.rename(p1, p2, function rename_cb() {
  // callback name is rename_cb
  // instantly better stacktrace upon error
}
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Consider yielding
• Going over a long dataset might take too 

much time and delay other requests if you 
have real time requirements for the 
requests.

• You might want to yield using 
process.nextTick so that you give other 
requests change to complete.
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Codepath complexity

• You can accidentally create a complex code 
path which is traversed multiple times in an 
error condition.

async.parallel([
  function func1(cb) { .... cb(); },
  function func2(cb) { .... cb(); }
], function all_done(err) {
  console.log(“Both functions done”);
});
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Codepath complexity

• Now think that both func1 and func2 start 
a complex IO operation.

• func1 encounters an error and calls 
cb(“error”) early.

• all_done() is now called with the error 
message.

Saturday, September 3, 11



Codepath complexity

• the func2 execution is not terminated on 
this error and thus it will continue.

• You need to design these kind of code 
paths so that they don’t do any harm if 
some of the concurrent code paths will 
encounter an error.
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Codepath complexity

• Add some try..catch blocks and you’ll find 
yourself in a very serious and deep 
sh^H^H hole.
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Questions?

Twitter: @juhomakinen 
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