
Pitfalls and lessons
learned with Node.JS

Juho Mäkinen
Software Architect at Applifier

@juhomakinen

Reaktor Dev Day
2011-09-02

Saturday, September 3, 11

Why would you choose
Node.JS?

Saturday, September 3, 11

Using Javascript as a
platform

• It’s possible to write entire application
stack with Javascript

• From browser all the way to the datastore

• Imagine that you can send a JS object from
the browser to the backend, store it to the
database and retrieve it later without any
unnecessary transformations.

Saturday, September 3, 11

Why Javascript
• Fast development cycle

• Easy data transformations as the storage
and delivery is always JSON

• It’s possible to share code between
browser and the backend

Saturday, September 3, 11

Why Node.JS
• Perfect for low latency, high IO applications

• Load balancing, API backend, comet /
longpoll servers, streaming...

• It’s easy to process the request, close the
client socket and continue some tasks after
the request has been processed.

• It’s easy to cache data between requests

Saturday, September 3, 11

Where Node isn’t good
• Harder to code (than say PHP).

• Need to take perfect care of all resources
to avoid leaks.

• Less libraries and bindings because
everything must be asynchronous and non-
blocking.

Saturday, September 3, 11

General tips for
Node.JS

What have we learned?

Saturday, September 3, 11

Buy a mac
• We can run our entire development

environment in our mac laptops.

• node

• mongodb

• apache, php (if you wish...)

Saturday, September 3, 11

Choose a good JS IDE
• I use PHPStorm from JetBrains

• Things to look:

• Variable coloring by type

• Unused code hilighting

• Code navigation

Saturday, September 3, 11

Log everything
• Log all your data and store it somewhere

when you can query it.

• Use some form of metrics system to trace
counters and to get history graphs out of
them.

• All this helps debugging, performance
tuning and diagnostics.

Saturday, September 3, 11

Log everything
• We use Scribe to feed performance and log

data from our machines into a hadoop
cluster. https://github.com/facebook/scribe

• Hadoop is used to crunch the data into
usable metrics.

• There’s also tools for getting realtime
statistics into usable graphs.

• Zabbix, statsd / graphite

Saturday, September 3, 11

https://github.com/facebook/scribe
https://github.com/facebook/scribe

Clustering
• Node is single threaded

• Using multiple cores needs additional
effort. There are two good options

• Spawn multiple instances, one for each
core and use load balancer to drive
traffic into them. “Forever” makes this
easy. https://github.com/indexzero/forever

Saturday, September 3, 11

https://github.com/indexzero/forever
https://github.com/indexzero/forever

Clustering
• Another option: Use Node Cluster

(http://learnboost.github.com/cluster/) to
fork worker threads.

Saturday, September 3, 11

http://learnboost.github.com/cluster/
http://learnboost.github.com/cluster/

Where to get modules?
• npm stands for “node package manager”

• It’s your apt-get / CPAN / yum for all
your node module needs. Learn it.

• Github. Full of node related modules.

• npm packages can be installed for each
project, or globally for entire system.

• Prefer to install packages per project.

Saturday, September 3, 11

Use async.js library
• Makes easier to write asynchronous code

and makes it look prettier.

• Helps avoiding nesting callbacks

• https://github.com/caolan/async

Saturday, September 3, 11

https://github.com/caolan/async
https://github.com/caolan/async

Don’t deploy via NPM
• NPM packages gets upgrades

• But you might not notice one

• An upgrade might break your system by
introducing a bug in an npm module used
by some other npm module.

• Hopefully your CI and testing environment
catches this.

Saturday, September 3, 11

Watch out for leaks
• The node server stays intact between

requests.

• Thus resources, memory and database
connections can easily leak.

• Db connection leaks are most common.

• Our testing framework and database api
helps detecting and avoiding them

Saturday, September 3, 11

Detect socket leaks
• You can use “netstat -np” to display socket

connections to the node process.

• Run a bunch of requests to the node and
then look if the database connections are
closed correctly.

Saturday, September 3, 11

Detect resource leaks
• Leaked sockets, database connections or

objects stored into scopes might leak
memory.

• Run node with “--expose-gc --trace_gc” to
get memory consumption data.

• Beware, the GC makes this hard to read

• Run 100000 queries and see that the
memory consumption is still about
the same.

Saturday, September 3, 11

The fun part:
Making your code

break less

Saturday, September 3, 11

Delete form array
var a = ['a', 'b', 'c', 'd'];

delete a[0];

console.dir(a);

['b', 'c', 'd']

Saturday, September 3, 11

Delete form array
console.log(a[0]) prints undefined
console.log(a[1]) prints b
console.log(a[2]) prints c
console.log(a[3]) prints d
console.length is 4

happy bug hunting...

Saturday, September 3, 11

Delete form array
console.log(a[0]) prints undefined
console.log(a[1]) prints b
console.log(a[2]) prints c
console.log(a[3]) prints d
console.length is 4

happy bug hunting...

Saturday, September 3, 11

Delete form array
// Array deletion done right
var a = ['a', 'b', 'c', 'd'];

// Array item 2 is ‘c’
// remove 1 item
a.splice(2, 1);

Saturday, September 3, 11

Delete form array
// Delete inside for loop
var a = ['a', 'b', 'b', 'c', 'd'];

for(var i = 0;i < a.length; i++) {
 if(a[i] == 'b') {
 a.splice(i, 1);
 i--;
 }
}

Saturday, September 3, 11

Avoid try..catch blocks
• As node is event driven, you use a lot of

callbacks.

• try..catch blocks doesn’t behave well with
callbacks and they’re slow.

• Stick with the node callback notation
where you pass error as first parameter
and handle errors this way.

Saturday, September 3, 11

Don’t write callbacks
unless needed

• Always prefer to return values directly with
return instead of returning value in a
callback.

• Also remember to refactor unnecessary
callbacks away when a function turns from
asynchronous into a synchronous after
refactoring.

Saturday, September 3, 11

Separate sync and
async gets with name

• get prefix for functions which returns
something as value

• var age = this.getAge();

• fetch prefix for functions which returns
something via callback

• this.fetchUser(function cb(err, user) {...});

Saturday, September 3, 11

Know your callstack
• The event callbacks come from the Node.JS

main loop and this will ruin your callstack.
var level2 = function(msg) {

 console.log(new Error().stack);

};

var level1 = function(msg) { level2(msg); };

level2("Directly");

process.nextTick(function () { level2("nextTick"); });

Saturday, September 3, 11

Know your callstack
Directly:
 at stack.js:5:15

 at Object.<anonymous> (stack.js:12:1)

 at Module._compile (module.js:404:26)

 at Object..js (module.js:410:10)
 at Module.load (module.js:336:31)

 at Function._load (module.js:297:12)

 at Array.0 (module.js:423:10)
 at EventEmitter._tickCallback (node.js:126:26)

Saturday, September 3, 11

Know your callstack
Via process.nextTick()
 at stack.js:5:15

 at Array.0 (stack.js:13:32)

 at EventEmitter._tickCallback (node.js:126:26)

Saturday, September 3, 11

Know your callstack
• You can use long-stack-traces npm module.

Just require() it, but watch for small performance
hit.

Saturday, September 3, 11

Avoind anonymous
functions

• Give all your functions a name so that you
can get better stacktraces.

• fs.rename(p1, p2, function rename_cb() {
 // callback name is rename_cb
 // instantly better stacktrace upon error
}

Saturday, September 3, 11

Consider yielding
• Going over a long dataset might take too

much time and delay other requests if you
have real time requirements for the
requests.

• You might want to yield using
process.nextTick so that you give other
requests change to complete.

Saturday, September 3, 11

Codepath complexity

• You can accidentally create a complex code
path which is traversed multiple times in an
error condition.

async.parallel([
 function func1(cb) { cb(); },
 function func2(cb) { cb(); }
], function all_done(err) {
 console.log(“Both functions done”);
});

Saturday, September 3, 11

Codepath complexity

• Now think that both func1 and func2 start
a complex IO operation.

• func1 encounters an error and calls
cb(“error”) early.

• all_done() is now called with the error
message.

Saturday, September 3, 11

Codepath complexity

• the func2 execution is not terminated on
this error and thus it will continue.

• You need to design these kind of code
paths so that they don’t do any harm if
some of the concurrent code paths will
encounter an error.

Saturday, September 3, 11

Codepath complexity

• Add some try..catch blocks and you’ll find
yourself in a very serious and deep
sh^H^H hole.

Saturday, September 3, 11

Questions?

Twitter: @juhomakinen

Saturday, September 3, 11

