Pitfalls and lessons
learned with Node.)S

Juho Makinen
Software Architect at Applifier
@juhomakinen

Reaktor Dev Day
2011-09-02

VWhy would you choose
Node.|S!?

Saturday, September 3, 11

. . Sl
Using |avascript as a

platform

® |t’s possible to write entire application
stack with Javascript

® From browser all the way to the datastore

® |magine that you can send a JS object from
the browser to the backend, store it to the
database and retrieve it later without any
unnecessary transformations.

Saturday, September 3, 11

v“
VWhy Javascript

® Fast development cycle

® Easy data transformations as the storage
and delivery is always |[SON

® |t’s possible to share code between
browser and the backend

v“
Why Node.JS

® Perfect for low latency, high 1O applications

® | oad balancing, APl backend, comet /
longpoll servers, streaming...

® |t's easy to process the request, close the
client socket and continue some tasks after
the request has been processed.

® |t's easy to cache data between requests

Saturday, September 3, 11

v“
Where Node isn’t good

® Harder to code (than say PHP).

® Need to take perfect care of all resources
to avoid leaks.

® | ess libraries and bindings because
everything must be asynchronous and non-
blocking.

General tips for
Node.]S

What have we learned?

Saturday, September 3, 11

Buy a mac

® VWe can run our entire development
environment in our mac laptops.

® node
® mongodb

® apache, php (if you wish...)

1 “‘\ 9

Saturday, September 3, 11

v“
Choose a good JS IDE

® | use PHPStorm from JetBrains
® Things to look:
® Variable coloring by type

® Unused code hilighting

® Code navigation

-“
Log everything
® | og all your data and store it somewhere

when you can query it.

® Use some form of metrics system to trace
counters and to get history graphs out of
them.

® All this helps debugging, performance
tuning and diagnostics.

v“
Log everything

® We use Scribe to feed performance and log
data from our machines into a hadoop
cluster. https://github.com/facebook/scribe

® Hadoop is used to crunch the data into
usable metrics.

® There’s also tools for getting realtime
statistics into usable graphs.

® /abbix, statsd / graphite

https://github.com/facebook/scribe
https://github.com/facebook/scribe

Clustering

® Node is single threaded

® Using multiple cores needs additional
effort. There are two good options

® Spawn multiple instances, one for each
core and use load balancer to drive
traffic into them.“Forever” makes this
easy. https://github.com/indexzero/forever

Saturday, September 3, 11

https://github.com/indexzero/forever
https://github.com/indexzero/forever

Clustering

® Another option: Use Node Cluster
(http://learnboost.github.com/cluster/) to

fork worker threads.

http://learnboost.github.com/cluster/
http://learnboost.github.com/cluster/

v“
Where to get modules?

® npm stands for “node package manager”

® |t’s your apt-get / CPAN / yum for all
your node module needs. Learn it.

® Github. Full of node related modules.

® npm packages can be installed for each
project, or globally for entire system.

® Prefer to install packages per project.

v“
Use async.js library

® Makes easier to write asynchronous code
and makes it look prettier.

® Helps avoiding nesting callbacks

® https://github.com/caolan/async

https://github.com/caolan/async
https://github.com/caolan/async

v“
Don’t deploy via NPM

® NPM packages gets upgrades
® But you might not notice one

® An upgrade might break your system by
introducing a bug in an npm module used
by some other npm module.

® Hopefully your C| and testing environment
catches this.

v“
Watch out for leaks

® The node server stays intact between
requests.

® Thus resources, memory and database
connections can easily leak.

® Db connection leaks are most common.

® Our testing framework and database api
helps detecting and avoiding them

Saturday, September 3, 11

-“
Detect socket leaks

® You can use “netstat -np’’ to display socket
connections to the node process.

® Run a bunch of requests to the node and
then look if the database connections are
closed correctly.

Saturday, September 3, 11

v“
Detect resource leaks

® | eaked sockets, database connections or
objects stored into scopes might leak
memory.

® Run node with “--expose-gc --trace_gc” to
get memory consumption data.

® Beware, the GC makes this hard to read

® Run 100000 queries and see that the
memory consumption is still about
the same.

Saturday, September 3, 11

The fun part:
Making your code
break less

Saturday, September 3, 11

“
Delete form array
var a = ['a",'b', 'c', 'd"];
delete a[0];

console.dir(a);

['b’, *c’, 'd"]

Saturday, September 3, 11

v“
Delete form array

console.log(a[0]) prints undefined
console.log(a[l]) prints b
console.log(a[2]) prints €
console.log(a[3]) prints d
console.length is 4

happy bug hunting...

v“
Delete form array

console.log(a[0]) prints undefined
console.log(a[l]) prints b
console.log(a[2]) prints €
console.log(a[3]) prints d
console.length is 4

happy bug hunting...

v“
Delete form array

// Array deletion done right
vara:[llllllld]

/I Array item 2 is ‘C’
// remove | item
a.splice(2, |);

Saturday, September 3, 11

v“
Delete form array

/I Delete inside for loop
var a = [lal’ 'b', 'b', 'C', |d|];

for(var i = 0;i < a.length; i++) {
if(a[i] == 'b") {
a.splice(i, I);
I--;

v“
Avoid try..catch blocks

® As node is event driven, you use a lot of
callbacks.

® try..catch blocks doesn’t behave well with
callbacks and they're slow.

® Stick with the node callback notation
where you pass error as first parameter
and handle errors this way.

Saturday, September 3, 11

v“
Don’t write callbacks

unless needed

® Always prefer to return values directly with
return instead of returning value in a
callback.

® Also remember to refactor unnecessary
callbacks away when a function turns from

asynchronous into a synchronous after
refactoring.

2

Saturday, September 3, 11

v“
Separate sync and

async gets with name

® get prefix for functions which returns
something as value

® var age = this.getAge();

® fetch prefix for functions which returns
something via callback

® this.fetchUser(function cb(err, user) {...});

-“
Know your callstack

® The event callbacks come from the Node.|S
main loop and this will ruin your callstack.

var level2 = function(msg) {

console.log(new Error().stack);

5

var levell = function(msg) { level2(msg); };

level2("Directly");

process.nextTick(function () { level2("nextTick"); });

Saturday, September 3, 11

-“
Know your callstack

Directly:
at stack.js:5:15
at Object.<anonymous> (stack.js:12:1)
at Module. compile (module.js:404:26)
at Object..js (module.js:410:10)
at Module.load (module.js:336:3 1)
at Function. load (module.js:297:12)
at Array.0 (module.js:423:10)
at EventEmitter._tickCallback (node.js:126:26)

Saturday, September 3, 11

-“
Know your callstack

Via process.nextTick()
at stack.js:5:15
at Array.0 (stack.js:13:32)
at EventEmitter._tickCallback (node.js:126:26)

1 “‘\ :

Saturday, September 3, 11

-“
Know your callstack

® You can use long=-stack=-traces npm module.

Just require() it, but watch for small performance
hit.

1 “‘\ 9

Saturday, September 3, 11

. Sl
Avoind anonymous

functions

® Give all your functions a name so that you
can get better stacktraces.

® fs.rename(pl, p2, function rename_cb() {
// callback name is rename cb
// instantly better stacktrace upon error

J

v“
Consider yielding

® (Going over a long dataset might take too
much time and delay other requests if you
have real time requirements for the
requests.

® You might want to yield using
process.nextTick so that you give other
requests change to complete.

Saturday, September 3, 11

v“
Codepath complexity

® You can accidentally create a complex code
path which is traversed multiple times in an
error condition.

async.parallel(]
function funcl(cb) { cb(); },
function func2(cb) { cb(); }

], function all_done(err) {
console.log(“Both functions done™);

v“
Codepath complexity

® Now think that both funcl and func2? start
a complex |O operation.

® funcl encounters an error and calls
cb(“error”) early.

® all done() is now called with the error
message.

v“
Codepath complexity

® the func? execution is hot terminated on
this error and thus it will continue.

® You need to design these kind of code
paths so that they don’t do any harm if
some of the concurrent code paths will
encounter an error.

%

Saturday, September 3, 11

v“
Codepath complexity

® Add some try..catch blocks and you’ll find

yourself in a very serious and deep
shH"AH hole.

aturday, September 3, 11

Questions!

Twitter: @juhomakinen

Saturday, September 3, 11

